
Exploring Data Security on Microprocessor
Hardware

A Thesis
Submitted in partial fulfillment of

the requirements for the degree of
Dual Degree

by

Meet Udeshi
(Roll No. 14D070007)

Supervisor:
Prof. Virendra Singh

Department of Electrical Engineering

Indian Institute of Technology Bombay
Mumbai 400076 (India)

26 June 2019

ii

Abstract

The current trends in computer architecture are increasingly focusing on sharing com-

puting resources among multiple programs and users. Multiple programs can share a

single core using simultaneous multi-threading which is widely supported by most of the

processors and operating systems. Virtual machine technology allows running multiple

OS instances on the same processor. While the software and hardware of VMs or multi-

threaded OS is able to isolate illegal access of data to prevent software vulnerabilities,

it cannot prevent the leakage of sensitive data via side-channels which exist due to de-

sign flaws in shared hardware like caches, branch predictors, prefetchers. Attackers have

successfully been able to extract encryption keys of various cryptographically secure al-

gorithms like AES and RSA. These leakages are possible and viable because hardware

design does not take care of the security against such side-channels. Moreover, software

trojans can use these leakages to create a covert channel of communication unknown and

undetectable by the OS and any software anti-viruses. Also, software exploits like return

oriented programming and buffer overflow attacks can be thwarted more effectively with

hardware solutions rather than software defenses. It has become increasingly necessary

to consider data security as an important metric for hardware design.

An introduction of side-channel attacks is provided as motivation for including security

as an important aspect of hardware design. We describe how data dependent execution,

which is present in AES and RSA ciphers, can be exploited by different cache side chan-

nels like Prime+Probe and Flush+Reload. As an inital step to cache side channels, we

have introduced a method to reverse engineer cache parameters using microbenchmarking

programs. We propose an attack to disable the prefetcher by preventing it from generating

memory accesses and interfering with side channels running in the cache. The attacker

is designed to work on a Stride Prefetcher, and is implemented and tested with OpenSSL

AES victim program. Results show that it is able to significantly reduce the number of

prefetches generated to almost 0. We also propose a hypothetical side channel which uses

the shared Reorder Buffer (ROB) on SMT cores. This side channel can be used to detect

data-dependent stalls in a victim program.

iii

Table of Contents

Declaration ii

Abstract iii

1 Introduction 1

2 Side Channel Attacks 3
2.1 Data dependent execution in encryption algorithms 3

2.2 Cache side channel . 4

2.3 Prime+Probe . 5

2.4 Flush+Reload . 6

2.5 Reverse engineering cache parameters 7

2.5.1 Experimental setup . 8

3 Covert Channel Attacks 11
3.1 Cache channels on GPGPU . 11

4 Mitigations against Cache side channels 13
4.1 Partition-locked cache . 13

4.2 Random permutation cache . 14

4.3 Intentional Cache pollution . 15

4.3.1 Disruptive Prefetching . 15

4.3.2 Context sensitive decoding . 16

5 Disabling Prefetcher to Amplify Side Channels 17
5.1 Motivation . 17

5.2 Attack Vectors . 18

5.3 Attacker Implementation . 19

5.3.1 Full Attacker . 19

5.3.2 Targeted Attacker . 21

iv

Table of Contents v

5.4 Simulation . 22

5.5 Results . 22

5.6 Conclusion . 26

5.7 Future Scope . 27

6 Side-channel using Reorder Buffer 28

7 Conclusion 29

Chapter 1

Introduction

In recent years, it has become difficult to keep up with Moore’s law using conventional

transistor scaling. Computer architecture has shifted focus from optimizing single-thread

performance to increasing throughput by running multiple threads and multiple programs

simultaneously. The current trends are increasingly focusing on sharing computing re-

sources among multiple programs and processes. Multi-thread and multi-core processors

are commonplace in personal computers and mobile phones, even embedded devices. In

cloud computing, technologies like virtual machines and virtual environments are allow-

ing multiple different programs to share the same computing resources. These shared

resources include all the structures inside cores and multi-core processors which can be

accessed simultaneously by threads colocated on a single core, or even processes on two

different cores. This poses a threat to the data security of many critical processes which

run in such a shared context.

Attackers with the right knowledge and tools can leverage hardware implementation

flaws in the design of these shared resources to extract data from a victim process via

undetectable side-channels. Malicious trojans can use these shared resources to construct

covert-channels to establish inter-process communication undetectable by the core or OS.

With the rapid increase of need of powerful computation resources, GPUs have been

extended to support general purpose computing. More recently, multiple processes are

able to share the GPGPU resource and this opens up a new domain of security attacks

which can be mounted on GPGPUs.

With the recent Meltdown (11) and Spectre (12) attacks capable of compromising any

Intel core regardless of the OS, it is obvious that along with power and performance,

design of computer architecture needs to consider data security as an important metric.

Moreover, a lot of software based attacks like buffer overflow and return-oriented pro-

gramming can be thwarted effectively using additional hardware structures. Hardware

1

2

support for security against software exploits is an efficient mitigation and should also be

considered when designing processors.

A lot of side-channel attacks are based on caches due to their common accessibility be-

tween different programs. Cache accesses are abstracted away from the program hence

OS-level access-restrictions do not apply on them. Caches also have a well-defined mem-

ory to cache-line mapping which is used by the attacker to infer memory addresses. The

time-difference between a cache-hit versus a cache-miss is also noticeable enough to be

detected by an executing program. These characteristics make the cache vulnerable to

side-channel leakages (9). Cache designs which try to avoid any one of these charac-

teristics lead to severe performance degradation. For example, if the memory to cache-

line mapping is to be avoided, a fully-associative cache may be used instead of a direct-

mapped or set-associative cache. But a fully-associative design limits the cache-size to

a value much smaller than that desired by modern programs. In fact, the decision of

moving from fully-associative caches to set-associative caches was done to make larger

cache-sizes feasible on modern hardware, and that decision cannot be undone only for

security measures without major impact on performance.

Cache designs like Newcache (8) try to achieve the same level of performance while also

preventing side-channel leakage. There are other security methods which add enough

noise to the cache to disrupt any side-channel. The Disruptive Prefetching (9) method

utilises the function of prefetcher to generate random memory accesses to confuse an at-

tacker while not interfering with program execution and performance. Another method

introduces a new context-sensitive decoder (10) to mask legitimate memory access in-

structions with extra random accesses during instruction decode.

Side channels work best when only the targeted region of code of the victim is making

memory accesses. While it is possible to prevent other programs and victim’s irrelevant

code from interfering, hardware which generates memory accesses like the prefetcher are

difficult to stop. The thesis presents an attack on the prefetcher which tries to completely

disable it from generating any memory accesses. This will help enhance the side channel

to facilitate better and faster key extraction.

A new potential side-channel which exploits shared Reorder Buffer (ROB) in SMT cores

is presented. ROB is one shared resource which hasn’t been analysed before for potential

side-channel leakages. A scenario is shown where stalls in one thread can affect IPC of

another thread sharing the same core.

Chapter 2

Side Channel Attacks

Shared resources of the processor can leak information about the tasks being performed

in it as shown in Fig. 2.1. This leaked information may be extracted by an attacker using

various means. The attacker will try to use some form of measurement like cache hit/miss,

time of execution, power consumption, EMI spikes to determine what part of code is

running or what data is being processed (1). These kind of attacks have been proven to be

effective on cryptography algorithms.

Processor

Caches

Crypto
algorithm

Functional
Units

Execution time

Cache contention

Power
consumption Electromagnetic radiation

Figure 2.1: A number of side channels which are capable of leaking data.

2.1 Data dependent execution in encryption algorithms

Encryption standards like RSA, ECDSA, AES have been implemented in programs in a

way which causes certain branches and memory access patterns to be dependent on the se-

cret key. By using side channels to analyse which branch was taken or detect which mem-

ory address was loaded, it is possible to decode the secret key. For example, Listing 2.1

shows the key-dependent branch of fast exponentiation part of RSA. Fast exponentiation

works by repeated squaring and multiplying when bit of the exponent is 1. In RSA, the

3

2.2 Cache side channel 4

secret key is used as the exponent hence we get a bit-by-bit difference in executed code.

When analysing power trace or measuring timing of the execution of this part of code, we

can infer that higher power consumption and larger execution time occur when key bit is

1. This proves that there is information being leaked bit by bit.

Listing 2.1: Key-dependent branch of fast exponentiation used in RSA

whi le (key > 0) {

e = key % 2 ;

Square () ;

Reduce () ;

i f (e == 1) {

M u l t i p l y () ;

Reduce () ;

}

key >>= 1 ;

}

In algorithms like AES and DES, P-box and S-box are used for fast permutation and

substitution. They essentially store a mapped permutation or substitution for each key

value. This means that during execution, AES algorithm will access various different

blocks from S-box and P-box memory region depending on the key which is being used.

If we can trace these memory accesses in some way, we can infer the secret key. Memory

buses leak data about the address via EMI channel, and by analysing that we can get a

trace of the memory access pattern. A better and more effective way of obtaining memory

access patterns is by analysing the cache.

2.2 Cache side channel

All the threads running in a single core use the same L1 caches inside that core. Processes

running on two different cores in a multi-core processor share the Last level cache. The

data access patterns of a process leaves behind fingerprints in the cache. Because of set-

associativity, if we can determine which cache line is being accessed by the process, we

can determine the actual address which was accessed.

This is done without ever having to read the actual cache line, by causing contention on

that cache line by an attacker process (2). When the attacker and victim are both trying to

2.3 Prime+Probe 5

use the same cache line, the attacker will get noticeable difference in execution time due

to cache misses. There are various ways in which a cache side channel can be created.

2.3 Prime+Probe

The steps followed by Prime+Probe attack are as follows:

1. Attacker primes the cache line by loading his own data which .

2. Victim process runs and accesses memory mapped to same cache line, hence evict-

ing attacker’s data.

3. Attacker probes the cache line by reloading the same data, and looking for a cache

hit/miss.

L1 cache set

victim
block

L2 cache set

Attacker data

victim
block

Attacker data

victim
block

Attacker data

Attacker data

victim
block Attacker data

victim
block Attacker data

Attacker primes cache set

Victim accesses data

Miss Hit Hit Hit

PRIME

ACCESS

PROBE

Figure 2.2: Example of a prime-probe attack on single L1 cache set. Miss in the PROBE

step can be noticed by increased execution time

A miss in the probe step results in increased code execution time for the attacker, which

it can easily measure by reading the Time Step Counter present in many modern cores.

As shown in Fig. 2.2, attacker has to prime the entire cache set (all ways) for a successful

attack. For analysing the victim’s every memory access, attacker needs to prime the

entire cache. This priming step leads to a lot of cache misses and can be tracked by event

counters and trigger security exceptions when the cache misses reach an alarming amount.

Moreover, in cases where attacker and victim are not colocated on the same core, such

an attack would have to use a lower level of shared cache like LLC. The probing step

requires LLCs to be fully inclusive else the victim will not evict attacker’s data from the

LLC and not lead to the required cache miss.

2.4 Flush+Reload 6

2.4 Flush+Reload

Flush+Reload is a side channel attack on caches which relies on the clflush instruction

present in X86 ISA (and similar variants in other ISAs). Flush+Reload is able to work

at a finer granularity than Prime+Probe. It is also able to successfully mount cross-core

attacks via the LLC.

1. Attacker flushes a cache line using clflush.

2. Victim process runs and accesses memory hence loading the flushed block into

cache.

3. Attacker reloads the same data, looking for a cache hit/miss.

L1 cache set

victim
block

(flushed)

L2 cache set

victim
block

victim
block

victim
block

victim
block

Attacker flushes cache line

Victim accesses data

Hit Miss Miss Miss

FLUSH

ACCESS

RELOAD

Flushed
line

Figure 2.3: Example of a flush-reload attack on single L1 cache set. Hit in the RELOAD

step can be noticed by decreased execution time

As seen in Fig. 2.3, the granularity of Flush+Reload is at cache line level rather than

cache set level. This happens because the attacker tries to access the same data as the

victim, instead of creating contention with other data mapping to the same cache set.

Accessing same data is possible because majority of encryption algorithms are provided

as system-wide shared libraries. Both the code and data regions of these libraries can

be accessed by all processes. As opposed to Prime+Probe, this makes Flush+Reload a

very practical and efficient attack. Flush+Reload is able to achieve greater granularity and

accuracy due to it scanning for Cache Hit instead of Cache Miss.

Flush+Reload is also effective on LLCs because inclusivity will not affect clflush

behaviour, hence attacker will get an LLC hit when the victim process accessed data.

This opens up possibility of mounting a Cross-VM attack (3) like shown in Fig. 2.4

2.5 Reverse engineering cache parameters 7

Attacker Victim

VM1 VM2

L1 L1

LLC

FLUSH ACCESS

Figure 2.4: Flush+Reload via the LLC enables mounting Cross-VM attacks. This exploit

is extremely significant in cloud computing environments

2.5 Reverse engineering cache parameters

This implementation of reverse engineering cache parameters is based on (5). In that

paper, Wong et al show how using a stride access pattern over an array to trigger a pre-

dictable number of cache-misses. By measuring latency of stride access, we can get an

idea of the number of cache misses.

For a given array size, we need to feed in the stride pattern into the array i.e. array[i]

should contain location of array[i+STRIDE]. We can create such an array pattern offline

before starting timing measurements. In this way, we can do a linked-list like traversal of

the array without needing to calculate next stride location online. Listing 2.2 shows how

one can create the array with a stride pattern.

Listing 2.2: Offline formation of array with stride access pattern

s i z e _ t ∗ a r r a y ; / / m a l l o c e d b e f o r e h a n d

s i z e _ t t ;

f o r (i n t i =0; i < a r r a y _ s i z e ; i ++) {

t = i + STRIDE :

i f (t >= a r r a y _ s i z e) t %= STRIDE ;

a r r a y [i] = (s i z e _ t) a r r a y + s i z e o f (s i z e _ t)∗ t ;

}

For measuring timing of the array access, rdtsc instruction is used to get a reading of

the Time Step Counter before and after accessing the array. The difference is plot versus

array size. Listing 2.3 shows how to traverse the array using the stride access data stored

2.5 Reverse engineering cache parameters 8

in it. The next_ptr variable stores pointer to next element to access. It is dereferenced

and the loaded data is again stored into next_ptr for the next iteration.

Listing 2.3: Timing measurement of stride access over the entire array

long s t a r t = _ _ r d t s c () ;

s i z e _ t ∗ n e x t _ p t r = &a r r a y [0] ;

f o r (i n t i =0; i <MAX_ITERS ; i ++) {

n e x t _ p t r = ∗ ((s i z e _ t ∗∗) n e x t _ p t r) ;

}

long t ime = _ _ r d t s c () − s t a r t ;

Fig. 2.5 shows a plot of latency vs array size. The latency plot stays constant initially

until an array size which fills up the whole cache. Once that happens, some lines in the

cache start getting evicted and we see a steep rise in latency. After any rise, the latency

stays constant for the line size of the cache. This is obvious because any access in the

same cache line will incur same total latency as there will only be one cache miss. This

latency rise occurs once for each cache set, because as long as there are new cache sets to

evict, there will be misses. The latency increase stops when one whole way of the cache

is replaced once by the array access. The starting point of latency increase gives us cache

size. The step width gives us line size. Number of steps gives number of sets, but that is

hard to clearly determine when noise is present in measurements. Thus we determine way

size by looking at the point where the latency plot flattens out again. Then sets =
waysize
linesize .

2.5.1 Experimental setup

For all cases, stride of 64B was used.

One set of simulations was done using gem5 simple CPU and configurable cache sizes.

This was done for testing out the algorithm. Fig. 2.5 was plot for L1 data cache of 1KB

size, 2-way, 64B line size. Fig. 2.6 was plot for L1 data cache of 16KB size, 4-way, 64B

line size.

The same algorithm was run on Intel Skylake i5-6500 processor with L1 cache of 32KB

size, 8-way, 64B line size. The latency plot is shown in Fig. 2.7. As is seen, there is some

amount of noise due to Out-of-Order processing and other programs interfering with the

execution of the latency measurements. Despite the noise, we can clearly make out the

steps, beginning of the latency increase, and way size. This gives us every parameter

required for the cache.

2.5 Reverse engineering cache parameters 9

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 900 1000 1100 1200 1300 1400 1500 1600

Size = 1024B

Linewidth = 64B

Waysize = 512B

A
c
c
e
ss

 t
im

e
 (

cy
cl

e
s)

Array size (bytes)

Figure 2.5: Latency vs. Array size plot for a 1kB 2-way cache with 64B cache line.

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 16500 17000 17500 18000 18500 19000 19500 20000 20500 21000

Size = 16384B

Linewidth = 64B

Waysize = 4096B

A
c
c
e
ss

 t
im

e
 (

cy
cl

e
s)

Array size (bytes)

Figure 2.6: Latency vs. Array size plot for a 16kB 4-way cache with 64B cache line.

2.5 Reverse engineering cache parameters 10

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 32000 33000 34000 35000 36000 37000 38000

Size = 32768B

Linewidth = 64B

Waysize = 4096B

A
c
c
e
s
s

tim
e
 (

cy
c
le

s)

Array size (bytes)

Figure 2.7: Latency vs. Array size plot for a 32kB 8-way cache with 64B cache line. Run

on Intel Skylake i5-6500

Chapter 3

Covert Channel Attacks

3.1 Cache channels on GPGPU

GPGPUs have a massively parallel architecture which allows for SIMT workloads to ef-

ficiently run. Apart from graphics and display use-cases, GPGPUs are being used for

parallel computation using frameworks like CUDA and OpenCL. GPGPUs in cloud ser-

vices are specifically designed for such computational use-cases. Nvidia GPGPUs have

recently started to support concurrent kernel execution at SM level, which allows multiple

programs to simultaneously use the GPGPU resource. In this shared context, one must

look at side channels which can be exploited.

GPU

SM SM

SM SM

SM

SM

L2 Global
memory

L1 L1 L1

L1 L1 L1

Attacker

Victim

Figure 3.1: GPGPU memory layout. Attacker and Victim colocation allows using L1 and

L2 caches as side channels.

The structure of GPGPU memory layout is shown in Fig. 3.2. Every SM contains a

private L1 cache, and all SMs share an L2 cache. The Global memory contains multiple

types of memory division like Constant memory, Texture memory etc. Concurrent kernel

execution allows co-location of different kernels on same SM. Due to resource constraints,

11

3.1 Cache channels on GPGPU 12

kernels could also run on two different SMs simultaneously. The first case allows attacker

to use L1 cache as side channel, and in the second case attacker has to use L2 cache.

Mounting a side channel attack on AES is possible on GPGPU because of existing im-

plementations of AES for GPGPU. However, there are not many cases where encryption

algorithms are run on GPGPUs. So these side channels are used as covert channels in-

stead. Covert channels use the same methods as side channel but they are used to set up

communication between two malicious programs. Such covert channels can be useful to

leak data to third parties without the OS or hardware detecting malicious behaviour.

Launch
kernelProgram 1

GPU

Private
data Kernel

1
Kernel

2

cache
Launch
kernel Program 2 Third

party

Figure 3.2: Structure of covert channel via GPGPU.

Naghibijouybari et al in (4) achieve communication speed of over 4Mbps using a combi-

nation of L1 cache contention and SFU contention as covert channels on multiple Nvidia

GPGPU architectures. They have used the inherent parallelism in GPGPUs to multiply

the speed of the created covert channels by opening parallel communication channels on

each SM.

A critical part of their attack is reverse engineering various parameters of GPGPU ar-

chitecture. To use caches as a side channel, we need to know all parameters of the cache

structure. We also need to know of the warp scheduling policy to control colocation of

two different kernels on same SM.

Chapter 4

Mitigations against Cache side channels

Software based mitigations against cache side channels involve changing the implemen-

tation of each encryption algorithm to avoid leaking data. But that is only possible for

a specific set of known attacks, and it is unavoidable for any software to not leave some

kind of fingerprint in the shared resources.

A proper solution involves changing hardware design of caches so that one process

doesn’t affect other processes via its cache accesses in a predictable way.

4.1 Partition-locked cache

Cache partitioning is a naive way of isolating processes from interfering with each other’s

cache accesses. A partitioned cache will let only one process access a single partition at a

time (6). If we partition the cache statically, it is equivalent to having a private cache for

every thread on the core. This either leads to huge power and area usage or high drop in

performance.

Wang et al have proposed a dynamically partitioned cache in (7). As seen in Fig. 4.1,

they add extra bits to every cache line to determine whether line is "Locked" and "ID"

of thread which locked it. A modified cache replacement policy takes into account these

bits when replacing any line. This ensures that locked lines can only be replaced by the

process that locked them. Hence, other processes will not be able to interfere with locked

lines.

Figure 4.1: A single cache line of PLCache

13

4.2 Random permutation cache 14

Cache lines

Permutation
table

Ad
dr

es
s

de
co

de
r

Effective address

Figure 4.2: Address decoding in RPCache

For implementing the PLCache, the hardware level changes include extra bits for every

cache line and a change of the replacement policy. However, PLCache requires addition

of special locked-load/store instructions to the ISA. This also means OS has to look over

which process gets to use them as a fairness measure. If unchecked, attackers can inten-

tionally lock lines which will hinder performance of other programs. Overuse or abuse of

the locking feature can lead to severe performance degradation, if not checked by the OS.

PLCache is better than static partitioning in that it allows locked partitions of the cache

to be assigned dynamically. But it has certain drawbacks in terms of implementation.

4.2 Random permutation cache

Random-permutation cache is another cache design proposed by Wang et al in (7). They

have added a redirection step in the address decoder of caches which uses a random per-

mutation table as seen in Fig. 4.2. The permutation table essentially randomises the cache

line in which an address will be stored. The size of permutation table is larger than cache

size (in terms of number of lines) such that there is lesser aliasing in the permutation table.

Moreover, the replacement policy is modified to update the permutation table for every

replacement, hence an attacker will not be able to decode the mapping.

RPcache is also able to mark sensitive data using "Lock" bits which are derived by

page protected bit. This is possible without any modification to ISA hence it is better

than PLCache. The only drawback of RPCache is the added step in address decoding,

which will increase cache latency by one or two cycles. This may not affect L2 or L3

caches much but it will drastically change performance of L1. To overcome this Wang

et al propose optimisations to the gate-level hardware of the decoder. The also propose

an improved cache architecture called Newcache (8) which overcomes these issues while

not losing in power and performance.

4.3 Intentional Cache pollution 15

4.3 Intentional Cache pollution

Cache pollution happens when unnecessary data resides in cache and evicts important data

which is being used by processes. It happens generally due to poor design and designers

will try to avoid it as much as possible, by using smarter replacement policies.

From a security perspective, we can use cache pollution to our advantage by introducing

enough noise in a cache side channel such that is hides leaked information. There are

multiple ways of intentionally polluting the cache. Two such ways are presented below.

4.3.1 Disruptive Prefetching

Core 1 Core 2

Shared Cache

Victim Attacker #1
(prime+probe)

random
prefetches

Disruptive
Prefetcher

Lower level memory heirarchy

Side channel

Figure 4.3: Disruptive prefetcher preventing side channel leakage

Pre-fetchers are hardware blocks which were originally designed to hide memory ac-

cess latency by guessing the need of certain memory address based on previous memory

access patterns. Memory locations guessed by the pre-fetcher are loaded into cache so

that when the code execution requires that memory, it gives a cache hit instead of miss.

Pre-fetchers like Stride pre-fetcher and GHB pre-fetcher are based on finding patterns in

the previous memory accesses and guessing that the next locations in that pattern will

be accessed. Fuchs et al in (9) introduce additional steps to the prefetchers to increase

the randomness in the memor access pattern. They randomise the pattern sequence and

degree of prefetching to intentionally pollute the cache with unnecessary data. This will

degrade the performance of non-malicious programs by a bit, but will terribly disrupt any

side channel established by an attacker. For example, in Prime+Probe attack, the attacker

will not know whether the victim or the pre-fetcher evicted its block from the cache, hence

it will wrongly trace the memory access of the victim. In the same way, Flush+Reload

would get false cache hits which were not caused by the victim.

4.3 Intentional Cache pollution 16

In Fig. 4.3, there is a side channel established between Victim and Attacker process.

The shared cache has a disruptive prefetcher which is continuously introducing random

prefetches on every access (prefetcher hit or miss). This is causing the Prime+Probe

attack to detect other cache locations which were not accessed by the victim but because

of these random prefetches.

4.3.2 Context sensitive decoding

A lot of modern processors use decoders to convert from ISA to an internal instruction

representation. Most popularly Intel converts from x86 ISA to microcode using a mi-

crocode cache mapping table. Taram et al explore in (10) if a custom decoder can be used

to improve the security of certain programs. They use the decoder to introduce decoy

instructions in the pipeline. These decoy instructions will change the timing characteris-

tics of the executing program, they will pollute the cache by running decoy loads and will

disrupt attackers attempting side channel or timing attacks. Their implementation, as seen

in Fig. 4.4 includes adding custom decoder hardware, and a few changes to the microcode

mapping table (of which there exists an established update procedure), and a few model

specific registers to control the context of the program. They show their method to be

effective in stopping I-Cache and D-Cache side channel attacks against RSA and AES.

Fetch

Decoder 1

Decoder 2

Custom
Decoder

Decode stage Issue stage

Issue Logic

Model Specific
Registers

Figure 4.4: Custom decoder for context sensitive decoding

Chapter 5

Disabling Prefetcher to Amplify Side
Channels

Cache side channels are well known for being effective in extracting data from modern

cryptographic ciphers. Attackers try to generate collisions with a victim program sharing

the same cache, and study their own cache timings to infer the victim’s memory accesses.

Some other hardware accessing the cache, e.g. prefetcher, degrades the quality of the

side channel by introducing false positives in the attacker’s data. This paper describes

a method to disable the prefetcher by preventing it from generating memory accesses

and interfering with side channels running in the cache. An attacker implementation is

designed to work on a Stride Prefetcher. Results show that it is able to significantly reduce

the number of prefetches generated to almost 0.

5.1 Motivation

An attacker program using the cache as a side channel tries to force collisions with the

victim program by making accesses which alias to the same cache lines (?). Time taken

for subsequent accesses to these cache lines differs and is used to determine whether there

was a successful collision or not. This data is further used to infer whether the victim

accessed a particular cache line or not, thus leaking data about the data of the program.

Different implementations of the side channel look for either a cache hit or a cache miss

as a sign of successful collision. The Prime+Probe attack fills the cache lines in a set with

data other than that being accessed by the victim. Any access by the victim to that set will

cause attacke’s data to be evicted, which will show up during the Probe step as a cache

miss (?). Similarly, the Flush+Reload attack looks for a cache hit to the same data as the

victim. A cache hit in the Reload step is infered as successful collision (?).

17

5.2 Attack Vectors 18

Core 1 Core 2

Shared Cache

Victim Attacker #1
(prime+probe)

Prefetcher

Lower level memory heirarchy

Side channel

Attacker #2
(prefetcher)

Figure 5.1: Prevent prefetcher from issuing memory accesses

The attacker assumes a scenario where only the victim is making memory accesses,

hence is able to deduce the memory access pattern. If there is another program or hard-

ware making memory accesses, they will surely interfere with the side channel. After

obtaining a successful collision, there is no way for the attacker to distinguish whether

the source of this collision was truly the victim. Fuchs et al (?) introduce a Disrup-

tive Prefetcher which generates spurious memory accesses, making the victim’s accesses

indistinguishable for any attacker.

This paper focuses on a way to disable the prefetcher and significantly reduce the num-

ber of generated prefetches. With a separate attacker focusing on disabling the prefetcher,

it becomes extremely unlikely for the side channel attacker to see a collision with a

prefetcher generated access. This enhances the side channel and can enable faster and

better data retrieval. The attack implementation has been designed specific to a Stride

prefetcher (?). However, the implementation can be used as-is or easily extended to

apply to any PC-indexed prefetcher table.

5.2 Attack Vectors

A Stride Prefetcher tries to identify load instructions which have a pattern with constant

distance between accesses i.e. a fixed stride. The prefetcher table stores entries containing

PC address of the load instruction, the last accessed memory address, the stride value and

a confidence counter. The table is indexed using the load PC, which leads to aliasing be-

5.3 Attacker Implementation 19

tween multiple PCs. Higher the value of the confidence counter, higher is the probability

that the next access follows the same stride pattern currently stored. The prefetcher gen-

erates memory accesses when it sees an entry with high enough confidence. Every entry

needs to be prevented from reaching this condition to disable the prefetcher. This design

exposes two attack vectors which the attacker can use to prevent entries from gaining high

confidence.

Evict Table Entries: The attacker can keep creating many new entries in the table, and

the prefetcher will be forced to evict older entries of the victim which have gained high

confidence. When the victim’s entry is added again to the table, it will start from a lower

default confidence and will have to go through the training phase again. If the victim’s

entry is quickly evicted by the attacker’s entry, it can never gain enough confidence to

generate memory accesses.

Decrement Confidence: The prefetcher calculates the new stride value for every access

using the last address. When this new stride differs from the last stride stored in the

entry, the confidence counter is decremented and the old stride is replaced with the newly

calculated one. This helps to keep confidence low for the attacker’s entries and ensures

that there are not accesses generated due to the attacker.

These two attack vectors are utilised to implement an attacker whose target is to reduce

the memory accesses generated by the prefetcher to zero.

5.3 Attacker Implementation

To create new entries in the table, every load executed by the attacker has to come at a

new PC address. A single load inside a loop will only create one new entry. The attacker

binary is created such that a large number of load instructions are placed at different PC

addresses. There need to be enough load instructions properly located at different PC

addresses so that, after aliasing, every location in the prefetcher table is accessed atleast

once.

It is generally the case that the prefetcher is accessed only on cache miss. To ensure that

the attacker’s loads generate a cache miss the memory address is flushed from the cache

hierarchy using clflush instruction (?).

5.3.1 Full Attacker

The full attacker is designed in a way to target the whole prefetcher table, without con-

sidering the victim program running. It targets to disable every entry in the table by

5.3 Attacker Implementation 20

keeping the confidence value low. Multiple load instructions have to be placed at differ-

ent PC addresses so that each entry in the table is aliased to atleast once. Considering a

set-associative table, the set-indexing bits of the PC are identified. Single load instruc-

tion in x86 is of 3 bytes. The corresponding clflush instruction is of 4 bytes. An extra

nop instruction has been added with the pair to round up the PC increment to 8 bytes. A

large enough sequence of these set of instructions, with extra nop instructions wherever

required, is generated to ensure aliasing to every entry in the table. It is important that

each entry gets a nearly equal number of hits from the attacker, to be properly effective.

The size of 8 bytes of the set of instructions helps in this versus 7 bytes.

Listing 5.1: Full Attacker disassembly: load misses at different PCs

00000000000006 ca < a t t a c k > :

. . .

6 ce : 8b 58 36 mov 0x36(% r a x) ,% ebx

6d1 : 90 nop

6d2 : 0 f ae 78 36 c l f l u s h 0x36(% r a x)

6d6 : 8b 58 08 mov 0x8(% r a x) ,% ebx

6d9 : 90 nop

6 da : 0 f ae 78 08 c l f l u s h 0x8(% r a x)

6 de : 8b 58 3 f mov 0 x3f (% r a x) ,% ebx

6 e1 : 90 nop

6 e2 : 0 f ae 78 3 f c l f l u s h 0 x3f (% r a x)

6 e6 : 8b 58 38 mov 0x38(% r a x) ,% ebx

6 e9 : 90 nop

6 ea : 0 f ae 78 38 c l f l u s h 0x38(% r a x)

6 ee : 8b 58 20 mov 0x20(% r a x) ,% ebx

6 f1 : 90 nop

. . .

Listing 5.1 shows a part of the disassembly of the binary generated. The full attacker

takes time to run a single iteration of the attack because of the repeated cache misses. An

attacker targeting a 16-set 4-way prefetcher table requires 128 load instructions. When

each of these loads gives a cache miss, the latency of the attacker becomes very high.

While one iteration of the attack is running, it is possible that some of the victim’s loads

can re-enter the table and build up a high enough confidence to generate prefetches. This

will be seen in the results in Section 5.5.

5.3 Attacker Implementation 21

5.3.2 Targeted Attacker

A faster implementation is required which can quickly evict such notorious loads of the

victim program. When the victim program is known, it is possible to predict which loads

will be able to re-train the prefetcher very quickly. The victim program is simulated and

its memory access pattern is recorded. This pattern when applied to a simulated model

of the prefetcher gives an idea about the load instructions which are likely generate the

most prefetches. The targeted attacker is tailored to these load instructions and leaves the

rest of the prefetcher entries untouched. The targeted attacker is generated by filtering

out unnecessary load instructions from the full attacker binary and replacing them by nop

instructions. This leads to a binary with few load instructions scattered and filled with nop

slides. A binary generated for hitting 2 load instructions of the victim requires 16 loads

compared to the 128 loads of the full attacker. This reduces the latency of the attacker

significantly and makes the attacker more effective against a victim program with few

notorious loads.

Listing 5.2: Targeted attacker disassembly: loads at aliased PCs

00000000000006 ca < a t t a c k > :

. . .

6d9 : 90 nop

6 da : 8b 58 0 f mov 0 xf (% r a x) ,% ebx

6dd : 0 f ae 78 0 f c l f l u s h 0 xf (% r a x)

6 e1 : 90 nop

6 e2 : 90 nop

6 e3 : 90 nop

6 e4 : 8b 58 3 c mov 0 x3c(% r a x) ,% ebx

6 e7 : 0 f ae 78 3 c c l f l u s h 0 x3c(% r a x)

6 eb : 90 nop

6 ec : 90 nop

<nop s l i d e > . . .

6 f7 : 90 nop

6 f8 : 8b 58 2 f mov 0 x2f (% r a x) ,% ebx

6 fb : 0 f ae 78 2 f c l f l u s h 0 x2f (% r a x)

6 f f : 90 nop

. . .

5.4 Simulation 22

Core 1 Core 2

Shared Cache

Victim Attacker #1
(prime+probe)

Prefetcher

Lower level memory heirarchy

Side channel

Attacker #2
(prefetcher)

Figure 5.2: Setup of attack to disable prefetcher from generating memory accesses

Listing 5.2 shows a part of the disassembly of the targeted attacker binary. The nop

slides look like they would add some delay in between but that is masked by the cache

miss latency caused by the load instruction.

5.4 Simulation

Table 5.1 shows the configuration of the simulator and included hardware. The victim

program runs on core 1 and attacker runs on core 2. The simulator makes measurements

for a phase of certain number of instructions. It records the number of prefetches is-

sued, average confidence of the entries, hits and misses to the prefetcher table by victim

program.

5.5 Results

Figures 5.3 and 5.4 show results of testing the full attacker with a benchmark programs

astar, bzip2 and a sample program stride access generator. It is evident that the full

attacker is not very effective in some conditions of the program, which is unacceptable.

For more relevant results, further tests are conducted with the OpenSSL implementation

of AES algorithm. The AES library function is run repeatedly with random inputs and

5.5 Results 23

Simulator gem5 X86

Core Type O3 CPUs 8-wide fetch

Number of Cores 2

L1 Icache 32K 8-way

L1 Dcache 32K 8-way

L2 cache 256K 16-way shared between cores

L2 prefetcher Stride 64-entry 4-way, confidence threshold 4

Table 5.1: Simulation setup

0 5 10 15 20
100

101

102

103

104

astar
no attacker full attacker

0 5 10 15 20
100

101

102

103

N
um

be
r

of
 p

re
fe

tc
he

s
is

su
ed

stride access

0 5 10 15 20
Phase (10^6 instructions)

100

101

102

103

bzip2

Figure 5.3: Number of prefetches issued on different benchmarks

5.5 Results 24

0 5 10 15 20
0

20

40

60

80

100
astar

0 5 10 15 20
0

20

40

60

80

100

P
er

ce
nt

ag
e

re
du

ct
io

n

stride access

0 5 10 15 20
Phase (10^6 instructions)

0

20

40

60

80

100
bzip2

Figure 5.4: Percentage reduction in number of prefetches

0 5 10 15 20 25
Phase (10^6 instructions)

100

101

102

N
um

be
r

of
 p

re
fe

tc
he

s
is

su
ed

no attacker full attacker targeted attacker

Figure 5.5: Comparision of number of prefetches issued by AES program

5.5 Results 25

the same key. The results under various attack scenarios are measured and compared in

Figures 5.5, 5.6 and 5.7. Two load instructions are identified for AES victim by using the

method outlined in Section 5.3.2. The targeted attacker is tailored to those load PCs. The

main observation in Figure 5.5 is that the targeted attacker is significantly more effective

than the full attacker. The full attacker is able to achieve an average reduction of 32%,

while the targeted attacker is able to successfully reduce the prefetches to 0. In Figure

5.6, the average confidence of the 2 sets which targeted prefetcher is attacking is shown.

The average confidence with no attacker is 6.9, with full attacker is 5.2 and with targeted

attacker is 3.5. The targeted attacker is able to lower confidence below the threshold value

of 4 hence is successful in reducing the prefetches.

0 5 10 15 20 25
Phase (10^6 instructions)

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 c
on

fid
en

ce
 o

f p
re

fe
tc

he
r

no attacker full attacker targeted attacker

Figure 5.6: Comparision of average confidence of prefetcher with AES program

0 5 10 15 20 25
Phase (10^6 instructions)

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r

of
 h

its
/m

is
se

s

hits - no attack
miss - no attack

hits - full attack
miss - full attack

hits - targeted attack
miss - targeted attack

Figure 5.7: Comparision of prefetch table hit and miss count by AES program

5.6 Conclusion 26

The effectiveness of targeted attacker can also be seen in Figure 5.7 as it is able to double

the miss rate of the victim program.

DCPT prefetcher: The same full attacker implementation is tested with a DCPT

prefetcher. A DCPT Prefetcher(17) is a PC indexed table which uses history buffers to

stores deltas of every memory address instead of a single stride value. The history is then

used to predict future deltas. A 128 entry fully associative table is added instead of the

stride prefetcher in the same setup described in Table 5.1. Figure 5.8 shows that the full

attacker is able to reduce the number of prefetches by 99%. This is because of the random

strides generated by the attacker which fill up history buffers of each entry with irrelevant

info. The victim’s pattern does not get enough time to be recorded completely.

0 5 10 15 20 25
Phase (10^6 instructions)

100

101

102

103

N
um

be
r

of
 p

re
fe

tc
he

s
is

su
ed

no attacker full attacker

Figure 5.8: Comparision of number of prefetches issued by DCPT Prefetcher with AES

program

5.6 Conclusion

The motivation of this work was to disable the prefetcher from generating memory ac-

cesses and prevent it from adding noise to cache side channels. The memory access

generated by a prefetcher may or may not be eventually requested by the victim program,

hence the prefetcher causes false positives in a cache side channel. When the prefetcher is

disabled, the system becomes equivalent to that with no prefetcher present and side chan-

nels are amplified. This paper presents two implementations of an attack on the prefetcher.

An analysis of the working of a stride prefetcher presents two attack vectors which can

be exploited for an attack. Stride prefetchers use the confidence counter of a valid entry

in the table to generate prefetches. The attacker is designed such that valid entries of the

victim program are regularly evicted from the table, and the confidence of these entries is

not allowed to cross the threshold.

5.7 Future Scope 27

The full attacker is designed to work on the whole prefetcher table. It is only able to

reduce the number of prefetches issued by 32% for the AES victim program. The ineffi-

ciency of the full attacker is improved in the targeted attacker which only attacks specific

entries of the victim program. These entries are identified beforehand by running simula-

tions and the targeted attacker is constructed to target these entries. The targeted attacker

is able to reduce the number of prefetches issued to 0. The reason of this significantly

better performance can be seen in the plots of average confidence and hit rate.

The full attacker is also tried on a DCPT prefetcher having a fully associative table

of 128 entries. The attacker gives a reduction of 99% in number of prefetches issued.

However, it is not able to reduce the number to completely 0.

5.7 Future Scope

There is scope to build a better attacker which is tailored for history-buffer based prefetch-

ers like the DCPT prefetcher. Further tests can be run by testing the attacker in parallel

with a side channel prime+probe attacker to see the impact. The effectiveness of this

attacker on ciphers apart from AES also can be explored. A similar analysis of security-

oriented prefetcher designs, e.g. the Disruptive prefetcher, can be conducted. It may

expose certain weaknesses of the design.

Chapter 6

Side-channel using Reorder Buffer

Reorder buffer is an important component of an Out-of-Order core utilised in the Toma-

sulo algorithm. It stores the incoming order of instructions before they are issued in an

out-of-order fashion. In an SMT context, this Reorder Buffer may either be shared among

threads or statically partitioned. The commit stage of the pipeline retires instructions from

the buffer as and when they get ready i.e. finish execution. The commit stage will have

a width equal to the pipeline width, so a 4-wide pipeline will have a commit stage which

retires 4 instructions at max in a single cycle.

This allows for a side-channel leakage to occur because a shared Reorder Buffer and a

shared commit stage will lead to interference among the two thread’s IPC. Fig. 6.1 shows

how stalling of Thread 1 may lead to increase in IPC of Thread 2 because it can now

utilise the full commit width.

If Thread 2 can determine with reasonable accuracy when Thread 1 is stalled, then we

can infer the data being processed if those stalls are data dependent. Data dependent

stalls can include cache misses and branch mispredictions. As we have seen in previous

chapters, encryption algorithms contain such data dependent loads and branches.

T1
T1
T2
T1
T2
T2

Retire logic(2 wide)

T1 (STALLED)
T1
T2
T1
T2
T2

Retire logic(2 wide)

Figure 6.1: Reorder buffer for SMT. When T1 is stalled T2 retires twice as many instruc-

tions.

28

References

[1] Chenglu Jin, Side Channel Attacks,

[2] D. Page, Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel

[3] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, Berk Sunar, Wait a minute!

A fast, Cross-VM attack on AES

[4] Hoda Naghibijouybari, Khaled N. Khasawneh, Nael Abu-Ghazaleh, Constructing

and Characterizing Covert Channels on GPGPUs

[5] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas

Moshovos, Demystifying GPU Microarchitecture through Microbenchmarking

[6] D. Page, Partitioned Cache Architecture as a Side-Channel Defence Mechanism

[7] Zhenghong Wang and Ruby B. Lee, New Cache Designs for Thwarting Software

Cache-based Side Channel Attacks

[8] Zhenghong Wang and Ruby B. Lee, A Novel Cache Architecture with Enhanced

Performance and Security

[9] Adi Fuchs, Ruby B. Lee, Disruptive Prefetching: Impact on Side-Channel Attacks

and Cache Designs

[10] Mohammadkazem Taram, Ashish Venkat, Dean Tullsen, Mobilizing the Micro-Ops:

Exploiting Context Sensitive Decoding for Security and Energy Efficiency

[11] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Ste-

fan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg, Meltdown

[12] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,

Yuval Yarom, Spectre Attacks: Exploiting Speculative Execution

30

References 31

[13] J. W. C. Fu, J. H. Patel and B. L. Janssens, Stride Directed Prefetching In Scalar

Processors, [1992] Proceedings the 25th Annual International Symposium on Mi-

croarchitecture MICRO 25

[14] The gem5 Simulator. Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven

K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar

Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay

Vaish, Mark D. Hill, and David A. Wood. May 2011, ACM SIGARCH Computer

Architecture News.

[15] http://www.gem5.org/docs/html/stride_8cc_source.html

[16] https://github.com/gem5/gem5/blob/master/src/mem/cache/prefetch/delta_correlating_prediction_tables.cc

[17] Storage efficient hardware prefetching using delta-correlating prediction tables, M

Grannaes, M Jahre, L Natvig - Journal of Instruction-Level Parallelism, 2011

	Declaration
	Abstract
	Table of Contents
	Introduction
	Side Channel Attacks
	Data dependent execution in encryption algorithms
	Cache side channel
	Prime+Probe
	Flush+Reload
	Reverse engineering cache parameters
	Experimental setup

	Covert Channel Attacks
	Cache channels on GPGPU

	Mitigations against Cache side channels
	Partition-locked cache
	Random permutation cache
	Intentional Cache pollution
	Disruptive Prefetching
	Context sensitive decoding

	Disabling Prefetcher to Amplify Side Channels
	Motivation
	Attack Vectors
	Attacker Implementation
	Full Attacker
	Targeted Attacker

	Simulation
	Results
	Conclusion
	Future Scope

	Side-channel using Reorder Buffer

