Function-wise Execution Migration

Meet Udeshi
July 13, 2018

1 Introduction

Prior research has shown great potential of Heterogeneous-ISA chip multiprocessors in terms of
performance and energy gains. Implementation of such a processor involves one major challenge
which is migrating execution of a process from one ISA to the other. Any implementation of such
a system has to take care of Memory Image consistency for both ISAs and perform necessary
transformations during migration. The other main challenge is determining possible points of
migration, and methods of identifying whether migration is beneficial, dynamically during runtime.
To harness the benefits of ISA diversity fully, execution migration cost needs to be low enough so
that frequent migration can be justified performance-wise.

2 Memory Image consistency

A program during execution accesses three different types of memory: Global, Stack and Heap.
Global memory is fixed at compile time hence can be maintained same for both ISAs. Heap
memory grows during runtime and is only created according to a few functions like ‘malloc’. If
implementation of these functions are same for both ISAs, then the image formed will be consistent
[?]. The stack memory is arranged by the compiler but it is created during runtime throughout
execution of a function. The stack is very frequently accessed during runtime hence rearranging it
for the purpose of image consistency would hit single threaded performance very hard.

The solution to this is to transform stack memory from layout created by one ISA to the layout
expected by the other ISA. Stack transformation is the part which consumes the most time during
execution migration.

3 Migration Techniques

To migrate entire process, we need to transform every stack frame individually and then update
all pointers referring to stack memory with correct addresses. A standard implementation would
require to wait for all stack frames to transform and then be able to migrate. This leads to a heavy
cost of migration in the range of few 100 microseconds [?].

3.1 Simultaneous Transformation

ARM

Decide to
Migrate

le(A,E).

L stc)

Migrate at

idle
D()

Figure 1: Simultaneous transformation of stack

When executing in function C(), previous frames in the stack are untouched by the program. This
allows us to run stack transformation on those frames in parallel to program execution. This greatly
reduces the time taken in stack transformation to time of transforming last function’s frame.

3.2 Single-frame transformation

X86 ARM

X86 ARM

() Al) idle idle co
B
i RetumcC(| |
Decide to Gk e

Migrate switch)
back Continue

Migratt

grale L st(C) stack st(B) stack

AQ)

idle B()
o B() B() B()

Al

() Singe cransf G ¢ stack (b) Return from single frame transformed function
a) Single frame transformation of stac

Another alternate for reducing migration time is to only transform last function’s stack when
migrating. This allows us to harness the affinity of certain functions towards a specific ISA. When
we feel that function currently executing would be affine to the other ISA, we migrate and only
incur cost of transformation for the last stack frame. While returning, a decision is made to
transform frame to current ISA, or switch back to previous ISA.

In worst case, we would have to transform every frame to new ISA when migrating one function.
But that cost would be no worse than standard migration, which transforms all frames immediately.

4 Implementation

LLVM Compiler toolchain was used for stack and pointer analysis. Internal steps for compiling
using LLVM (clang compiler) are these:

e Source code is converted to LLVM-IR by the Clang compiler.

e LLVM-IR is further processed by 1lc based on provided architecture parameters (Target
triple)

e Generated object files for each source have to be linked to create single executable.

e The system linker is used, hence for ARM compilation on X86 host (cross-compile) we need
to have an ARM compatible linker. One can use the package manager provided GCC cross-
compiler linker without affecting any of the compilation steps by LLVM, provided only the
linker is used.

4.1 Stack frame map generation

In generating a migration map for function stack, we require mapping of stack slots from X86 to
ARM. This mapping is found by looking at alloca statements at the start of function in LLVM-IR
file. The IR file is architecture independent, the variables assigned by alloca would hold the same
data in both architectures. We need to find the stack slot alloted to these variables and that will
provide the required mapping. Stack slot allocation happens in an 11c pass called prologepilog
which does Prolog-Epilog insertion for each function. We take an output dump of Machine-IR
code after this pass and look at the stack frame for the mapping.

4.2 Migration sequence generation

To save on time and memory-accesses during migration, we need to modify the stack inplace. In-
place modification requires going in a sequence in which no data on the stack is overwritten.

As an example take function: BZ2_bzDecompressStream(bz_stream*, int, int)

Slot size align location

X86:

fi.0 4 4 [SP-28]

fil 8 8 [SP-24]

fi.2 4 4 [SP-36]

fi.8 4 4 [SP-32]

fi4 8 8 [SP-16]

ARM: tmpl = frame|loc [1]]

fi.0 4 4 [SP-20] frame [loc [1]] = frame][loc [0]]
fi.l 8 8 [SP-32]

fi.2 4 4 [SP-36] for i=2..len(loc):

fi.3 4 4 [SP-40] tmp2 = frame|loc|[i]]
fi4 8 8 [SP-48] frame[loc[i]] = tmpl

tmpl = tmp?2

When migrating from X86 to ARM, £i.0 moves from location [SP-28] to [SP-20]. Location
[SP-20] already contains data of slot £i.1 ([SP-24]...[SP-17], size 8 bytes). So we first have
to backup fi.1 locally and then overwrite with data from £i.0. The locally stored fi.1 will then
be stored at its new location, after same backup procedure is applied. This sequence will make
sure migration is done inplace, and without loss or corruption of data.

The pseudo-code on the right lays out a method for migration using the sequence and two
temporary variables.

4.3 Pointer migration

The previously generated LLVM-IR also helps us identify pointers to stack being created and
passed to functions as arguments. alloca instruction actually returns a pointer to the stack slot,
which is stored in the SSA variable. Generally when passing-by-value that variable is passed to
a load instruction and data retreived is passed to the function arguments. When the variable is
used directly, that means that the function is getting passed a pointer of that stack-slot. This is
the case where we have to take care of migration i.e. modifying the value of this pointer from X86
location to ARM location.

define @functionA
%2 = alloca i32
%3 = alloca i64

%51 — load 164, %3 i64%
%52 = call @functionB (%51 164, %2 132x)

In the above example LLVM-IR code, %2 and %3 are pointers to two stack-slots. As we can
see, both are of type 132*, i64x* respectively. %3 is passed to the load function, hence the value
of the stack-slot is now in %51 which is passed to the function. However, %2 is passed directly to
the function hence it is passed as a pointer. We will have to take care of functionB when we
migrate functionA because the value of pointer will need to be updated. This has to be done for
all functions where this pointer is passed to, directly or indirectly via multi-level calls.

5 Simulation and Results

We have used the LLVM+Clang toolchain for analysis of stack-frames of every function in the
benchmark. We have built tools to generate mapping of stack-slots in between X86 and AARCHG64
ISAs.

We have implemented a stack-transformer currently as a C function migrate (), which can be
called from inside the function at any point. Running the benchmark in gem5 and timing the
execution of migrate() function gives us the time taken for migration in both the methods shown
above.

60

50

40

30 W XB6
uARM

20

10

0 ‘ I —
bzip2 libquantum sjeng hmmer

Figure 3: Migration time for various benchmarks

